才

T/TMAC 标

T/TMAC XXXX—2025

半导体集成电路 低噪声运算放大器

体

Semiconductor integrated circuit low noise operational amplifier

草案版次选择

在提交反馈意见时,请将您知道的相关专利连同支持性文件一并附上。

已授权的专利证明材料为专利证书复印件或扉页,已公开但尚未授权的专利申请证明材料为专利公开通知书复印件或扉页,未公开的专利申请的证明材料为专利申请号和申请日期。

2025 - XX - XX 发布

2025 - XX - XX 实施

目 次

前	前言II						
1	范围						
2	规范性引用文件1						
3	术语和定义						
4 技术要求							
	4. 1	噪声性能					
	4.2	增益与带宽	1				
	4.3	输入/输出特性	2				
	4.4	线性度与失真	2				
	4.5	电源抑制比(PSRR)	2				
	4.6	稳定性与可靠性	2				
5	试验	金方法	2				
	5. 1	噪声性能测试	2				
	5. 2	增益与带宽	3				
	5.3	输入/输出特性测试	3				
	5.4	线性度与失真测试	3				
	5. 5	电源抑制比(PSRR)	3				
	5.6	稳定性与可靠性测试	4				
6	检验	&规则	4				
	6. 1	检验分类	4				
	6. 2		4				
	6. 3	出厂检验					
	6. 4	型式检验	4				
	6. 5		4				
	6.6	判定规则	5				
7	标志	5、包装、运输与贮存	5				
	7. 1	标志					
	7. 2	包装	-				
	7. 3	运输					
	7 4		5				

前 言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由××××提出。

本文件由××××归口。

本文件起草单位:

本文件主要起草人:

半导体集成电路 低噪声运算放大器

1 范围

本文件规定了半导体集成电路中低噪声运算放大器的技术要求、试验方法、检验规则、标志、包装、运输与贮存。

本文件适用于半导体集成电路中低噪声运算放大器的生产、制造。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

3 术语和定义

下列术语和定义适用于本文件。

3.1

低噪声运算放大器 low noise operational amplifier

通过优化电路结构、器件选型及工艺设计,实现极低等效输入噪声电压或电流,适用于微弱信号放大场景的运算放大器。

3.2

三阶交调点 third-order intermodulation point

表征放大器线性度的参数,为三阶交调分量功率与基波分量功率相等时的输入功率值,单位为dBm。

3.3

闪烁噪声 flicker noise

半导体器件中的低频噪声,其功率密度随频率升高而减小。

3.4

拐角频率 corner frequency

闪烁噪声的功率密度与白噪声(宽带热噪声)功率密度相等的频率点。

4 技术要求

4.1 噪声性能

4.1.1 等效输入噪声电压

- 4.1.1.1 在 1 kHz 频率下,等效输入噪声电压密度不应大于 1.5 nV/\sqrt{Hz} 。
- 4.1.1.2 在频带 10 Hz~100 kHz 时,宽带噪声电压有效值(RMS)不应大于 10 μV。

4.1.2 等效输入噪声电流

在频率1 kHz下,等效输入噪声电流密度不应大于2 fA/√Hz。

4.1.3 闪烁噪声拐角频率

闪烁噪声的拐角频率(fc)不应大于10 Hz。

4.2 增益与带宽

4.2.1 开环电压增益(Avo)

在直流至频段1 MHz内,开环电压增益不应小于120 dB。

4.2.2 带宽

-3 dB的小信号带宽不应小于10 MHz, 1 dB压缩点的大信号带宽不应小于5 MHz。

4.3 输入/输出特性

4.3.1 输入阻抗

共模输入阻抗不应小于 1×10^{12} Ω ,差模输入阻抗不应小于 1×10^{9} Ω 。

4.3.2 输出电压摆幅

在电源电压±15 V下,负载电阻 (RL)为10 kΩ时输出电压摆幅不应小于±13 V。

4.4 线性度与失真

4.4.1 总谐波失真(THD)

在1 kHz、1 Vrms输出条件下,THD不应大于0.001%。

4.4.2 三阶交调截点(IIP3)

在频段100 MHz内, IIP3不应小于40 dBm。

4.5 电源抑制比 (PSRR)

在直流至频段1 MHz内, PSRR不应小于100 dB。

4.6 稳定性与可靠性

4.6.1 相位裕度

闭环增益为1的条件下,相位裕度不应小于60°。

4. 6. 2 工作温度范围

商业级产品在-20 ℃~70 ℃中正常工作; 工业级产品在-40 ℃~85 ℃中正常工作。

5 试验方法

5.1 噪声性能测试

5.1.1 等效输入噪声电压

试验应按下列步骤执行:

- a) 将待测放大器接入低噪声前置放大器电路,输入端通过屏蔽电缆连接至信号源;
- b) 设置信号源输出频率为1 kHz,关闭信号输出;
- c) 使用频谱分析仪测量输出端噪声电压密度,记录频率 1 kHz 的数据;
- d) 按公式(1)计算频带10 Hz~100 kHz的宽带噪声电压有效值(RMS)。

$$V_{n,RMS} = V_{n0} \times \sqrt{f_{high} \times f_{low}}$$
 (1)

式中:

 $V_{n,RMS}$ ——噪声电压有效值,单位为微伏(μV);

 V_{n0} ——在1kHz 频率处测得的等效输入噪声电压密度,单位为纳伏每根号赫兹(nV/\sqrt{Hz});

f_{high}——频带上限频率,值为100 kHz;

flow——频带下限频率,值为10 Hz。

5.1.2 等效输入噪声电流

试验应按下列步骤执行:

- a) 在输入端串联高精度电流检测电阻;
- b) 通过低噪声电流放大器将电流信号转换为电压信号;
- c) 频率设置为1 kHz,使用频谱分析仪测量输出端噪声电流密度。

5.1.3 闪烁噪声拐角频率

试验应按下列步骤执行:

- a) 使用低频信号源和频谱分析仪,扫描频率 0.1 Hz~1 kHz;
- b) 测量噪声电压密度随频率变化曲线;
- c) 确定闪烁噪声与拐角频率 fc 的白噪声交点。

5.2 增益与带宽

5.2.1 开环电压增益

试验应按下列步骤执行:

- a) 将待测放大器配置为开环模式,通过反馈网络确保稳定性;
- b) 使用网络分析仪输入扫频信号直流至频率 1 MHz, 测量增益响应曲线;
- c) 记录直流至频率 1 MHz 内的最小增益值。

5.2.2 带宽(BW)

试验应按下列步骤执行:

- a) 小信号带宽: 输入-60 dBm 正弦信号,使用网络分析仪测量-63 dBm 截止频率;
- b) 大信号带宽:输入 1 dB 压缩点功率信号,测量输出幅度下降 1 dB 时的频率。

5.3 输入/输出特性测试

5.3.1 输入阻抗

试验应按下列步骤执行:

- a) 共模输入阻抗: 在输入端施加两组不同的共模电压,使用高精密电流计串联于输入端,记录对应的输入电流,共模输入阻抗应为共模电压变化量与输入电流变化量的比值;
- b) 差模输入阻抗: 在差分输入端施加小信号电压,测量输入电流差。

5.3.2 输出电压摆幅

试验应按下列步骤执行:

- a) 电源电压设置为±15 V,输出端接 10 kΩ负载;
- b) 输入阶跃信号,使用示波器测量最大不失真输出电压摆幅。

5.4 线性度与失真测试

5.4.1 总谐波失真(THD)

试验应按下列步骤执行:

- a) 输入1 kHz、1 Vrms 正弦信号至放大器;
- b) 使用失真分析仪测量输出信号 THD。

5.4.2 三阶交调截点(IIP3)

试验应按下列步骤执行:

- a) 输入频率间隔 1 MHz、中心频率 100 MHz 的双音信号,功率均为-20 dBm;
- b) 通过频谱分析仪测量三阶交调分量功率,计算 IIP3。

5.5 电源抑制比 (PSRR)

试验应按下列步骤执行:

a) 在电源端叠加直流至频率 1 MHz 的 100 mV 纹波信号;

设置格式[轩 高]: 非突出显示

设置格式[轩 高]: 非突出显示

设置格式[轩 高]: 非突出显示

b) 使用锁相放大器测量输出端纹波电压,计算 PSRR。

5.6 稳定性与可靠性测试

5.6.1 相位裕度 (PM)

试验应按下列步骤执行:

- a) 配置放大器为单位增益闭环;
- b) 使用网络分析仪测量开环增益和相位曲线;
- c) 确定增益为 0 dB 时的相位裕度。

5. 6. 2 工作温度范围

试验应按下列步骤执行:

- a) 商业级:在温度-20 ℃~70 ℃的试验箱中放置 30 min,测试功能与参数稳定性;
- b) 工业级: 在温度-40 ℃~85 ℃的试验箱中放置 30 min 重复测试。

6 检验规则

6.1 检验分类

检验应分为出厂检验和型式检验。

6.2 检验项目

检验项目应符合表1的规定。

表 1 检验项目

序号	项目	出厂检验	型式检验
1	等效输入噪声电压	√	√
2	等效输入噪声电流	_	√
3	闪烁噪声拐角频率	_	√
4	开环电压增益	√	√
5	带宽 (BW)	_	√
6	输入阻抗	_	√
7	输出电压摆幅	√	√
8	总谐波失真 (THD)	√	√
9	三阶交调截点(IIP3)	_	√
10	电源抑制比 (PSRR)	_	√
11	相位裕度(PM)	_	1
12	工作温度范围	_	√
>	## 11 JEAN AN EST IT		

注: "√"为检验项目, "-"为非检验项目。

6.3 出厂检验

出厂检验项目应符合表1的规定。

6.4 型式检验

型式检验项目应符合表1的规定。有下列条件之一时,应进行型式检验:

- a) 新产品或老产品转厂生产的试制定型鉴定时;
- b) 正常生产时,每年至少检验一次;
- c) 材料、工艺改变,可能影响产品性能时;
- d) 停产1年后,恢复生产时;
- e) 出厂检验结果和上次型式检验结果有较大差异时。

6.5 组批与抽样

6.5.1 组批

使用相同的原材料、生产工艺及生产设备为一检验批,单批次产品数量不应超过5000件。

6.5.2 抽样

- 6.5.2.1 出厂检验按同一批次产品的1%抽样,不足100个时全数检验。
- 6.5.2.2 型式检验从出厂检验合格批次中随机抽取3个样品。

6.6 判定规则

- 6.6.1 出厂检验全部符合规定,应判定该批次合格;若有不合格项,允许加倍抽样复检;复检后仍不合格,应判定不合格。
- 6.6.2 所有检验项目合格,应判定型式检验合格;若出现不合格项,允许加倍抽样复检;复检后仍不合格,应判定不合格。

7 标志、包装、运输与贮存

7.1 标志

产品标志应清晰、牢固地标注于器件本体或最小包装单元上,并应包括下列内容:

- a) 产品型号及规格代号;
- b) 制造商名称或商标;
- c) 生产批号与日期代码;
- d) RoHS、无铅标志等环保标识;
- e) 静电敏感器件(ESD)警示符号。

7.2 包装

7.2.1 内包装

产品应采用金属屏蔽袋、导电泡沫等防静电包装,袋内放置湿度指示卡,密封后标注防潮等级。

7.2.2 外包装

外包装宜使用抗压强度大于300 N的瓦楞纸箱,箱内填充防震材料。箱体标识应包括下列内容:

- a) 产品名称、型号、数量;
- b) 制造商信息;
- c) "防静电""防潮""向上"等运输标识;
- d) 批号及有效期。

7.3 运输

运输工具应具备防震、防雨、防尘条件,严禁与化学品、强磁场物品混运,避免剧烈振动和堆叠压力。

7.4 贮存

贮存温度为-10 ℃ \sim 40 ℃,相对湿度不超过60%的环境,无腐蚀性气体,避光、通风。贮存期为1年。